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Abstract
An exact solution of the transient dynamics for a sequential associative memory
model is discussed through both the path-integral method and the statistical
neurodynamics. Although the path-integral method has the ability to give an
exact solution of the transient dynamics, only stationary properties have been
discussed for the sequential associative memory. We have succeeded in deriving
an exact macroscopic description of the transient dynamics by analysing the
correlation of crosstalk noise. Surprisingly, the order parameter equations
of this exact solution are completely equivalent to those of the statistical
neurodynamics, which is an approximation theory that assumes crosstalk noise
to obey the Gaussian distribution. In order to examine our theoretical findings,
we numerically obtain cumulants of the crosstalk noise. We verify that the
third- and fourth-order cumulants are equal to zero, and that the crosstalk noise
is normally distributed even in the non-retrieval case. We show that the results
obtained by our theory agree with those obtained by computer simulations. We
have also found that the macroscopic unstable state completely coincides with
the separatrix.

PACS numbers: 87.18.Sn, 05.20.−y, 75.10.−b

1. Introduction

Statistical mechanical theories have been applied to the field of neural networks such as
combinatorial optimization and associative memories. Recently, they have also been applied
to the field of information science such as error-correcting codes, image recovery and CDMA
[1–8]. For example, the maximum a posteriori probability (MAP) and the maximum posterior
marginals (MPM) in the framework of the Bayesian estimation correspond to finding the
ground state and the equilibrium state of the corresponding spin system, respectively. From
this point of view, information processing can be treated as some kind of relaxation process
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of spin systems. The transient dynamics of systems should, therefore, be discussed from the
information theoretic point of view.

In general, however, theoretical treatment of the dynamics is extremely difficult compared
with the equilibrium statistical mechanics of frustrated systems into which many problems
concerning the information processing are mapped. Although a lot of studies have been done to
analyse the transient dynamics [9–11], it is well known that achieving a tractable rigorous
treatment is hopeless regarding the dynamics of frustrated systems. In this paper, we discuss a
correlation type associative memory model having frustrated couplings, and rigorously derive
an exact macroscopic description of the transient dynamics for this model.

There are two types of associative memory models: autoassociative memory models and
sequential associative memory models. In the case of autoassociative memory models [12],
their storage capacity and phase diagram have been analysed by equilibrium theories [13, 14].
In the case of sequential associative memory models, there is no equilibrium state since the
network retrieves different patterns sequentially. As we mentioned above, since associative
memory models definitely belong to information processing systems, it is important to
analyse the information process, that is, the retrieval process of the stored patterns. Although
the path-integral method based on the generating function [9, 15–17] has the potential ability
to provide a rigorous solution for an associative memory model, the theory is formal and
intractable because the complexity of the numerical calculation is exponentially large with
respect to the time step. Accordingly, the theory can only describe the short time region and
equilibrium state.

Recently, Düring et al [18] presented the path-integral method regarding a sequential
associative memory model. However, they did not discuss the transient properties of the
retrieval process, but only analysed the properties of the stationary state, i.e., the storage
capacity and the phase diagram [18]. On the other hand, the statistical neurodynamics
[10, 19–22] is an approximation theory capable of analysing the long-term behaviour of the
transient dynamics. Here, the input to the spin or neuron can be divided into two terms.
The first one is a signal term, which is a signal to retrieve, and the second one is a crosstalk
noise term, which prevents retrieval. In the statistical neurodynamics, one assumes that
the crosstalk noise obeys the Gaussian distribution with mean zero and a time-dependent
variance and derives macroscopic recursive equations for the amplitude of the signal term
and the variance of the crosstalk noise. Therefore, the basin of attraction and other dynamic
properties can be discussed through the statistical neurodynamics. For the autoassociative
memory model, Nishimori and Ozeki tried to numerically check the Gaussian assumption
using large-scale computer simulations, and found that the assumption holds only when the
retrieval process succeeds [20, 23].

In this paper, we derive an exact solution of the transient dynamics for the sequential
associative memory model through the path-integral method and an approximated solution
through the statistical neurodynamics. We then compare the results of the two theories and
try to clarify their relationship.

This paper is constructed as follows. In the second section, the sequential associative
memory model that we use is defined. In the third section, we introduce the formal macroscopic
state equations obtained by Düring et al using the path-integral method. In the fourth
section, we derive an exact macroscopic description of the transient dynamics by the path-
integral method. In the fifth section, we also derive macroscopic state equations by the
statistical neurodynamics, and prove that both the path-integral method and the statistical
neurodynamics give the same equations for the sequential associative memory model. In the
sixth section, the transient dynamics are verified by comparing these theories with computer
simulations.
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2. Sequence processing neural network

Let us consider a sequential associative memory model that consists of N spins or neurons.
We consider the case of N → ∞. The state of the spins takes σi(t) = ±1 and updates the state
synchronously with the following probability:

Prob[σi(t + 1)|hi(t)] = 1
2 [1 + σi(t + 1) tanhβhi(t)] (1)

hi(t) =
N∑
j=1

Jijσj (t) + θi(t) (2)

where β is the inverse temperature, β = 1/T. When the temperature is absolute zero, i.e.,
T = 0, the state of the spins σi(t + 1) is determined by the sign of local field hi (t), that is,

σi(t + 1) = sgn[hi(t)]. (3)

The term θ i (t) is a threshold or an external input to the network. Synaptic connection Jij stores p

random patterns ξµ = (
ξ
µ

1 , . . . , ξ
µ

N

)T
so as to retrieve the patterns as ξ1 → ξ2 → · · · ξp → ξ1

sequentially. For instance, it is given by

Jij = 1

N

p∑
µ=1

ξ
µ+1
i ξ

µ

j (4)

where ξp+1 = ξ1. The number of stored patterns p is given by p = αN, where α is called
the loading rate. Each component of the patterns is assumed to be an independent random
variable that takes a value of either +1 or −1 according to the following probability

Prob
[
ξ
µ

i = ±1
] = 1

2
. (5)

We determine the initial state σ(0) according to the following probability distribution

Prob[σi(0) = ±1] = 1 ± m(0)ξpi
2

(6)

and therefore the overlap between the pattern ξp and the initial state σ(0) is m(0). The network
state σ(t) at time t is expected to be near the pattern ξt, when initial overlap m(0) is large and
the loading rate is small.

3. Path-integral method

Düring et al [18] discussed the sequential associative memory model by the path-integral
method. In this section, we introduce macroscopic state equations for the model with a finite
temperature T � 0, according to their paper. The detailed derivation is available in their
paper [18].

In order to analyse the transient dynamics, the generating function Z[ψ] is defined as

Z[ψ] =
∑

σ(0),...,σ(t)

p [σ(0),σ(1), . . . ,σ(t)] e−i
∑

s<t σ(s)·ψ(s) (7)

where ψ = (ψ(0), . . . ,ψ(t − 1)). The state σ(s) = (σ1(s), . . . , σN(s))
T denotes the state

of the spins at time s and the probability p[σ(0),σ(1), . . . ,σ(t)] denotes the probability of
taking the path from initial state σ(0) to state σ(t) at time t through σ(1),σ(2), . . . ,σ(t − 1).
As (7) shows, the generating function takes the summation of all 2N(t+1) paths which the
network can take from time 0 to t. The generating function Z[ψ] involves the sequence
overlap m(s), which represents the direction cosine between the state σ(s) and the retrieval



256 M Kawamura and M Okada

pattern ξs at time s, the response functions G(s, s′) and the correlation functions C(s, s′) as
follows:

m(s) = i lim
ψ→0

1

N

N∑
i=1

ξsi
∂Z[ψ]

∂ψi(s)
= 1

N

N∑
i=1

ξsi 〈σi(s)〉 (8)

G(s, s′) = i lim
ψ→0

1

N

N∑
i=1

∂2Z[ψ]

∂ψi(s)∂θi(s′)
= 1

N

N∑
i=1

∂ 〈σi(s)〉
∂θi(s′)

(9)

C(s, s′) = − lim
ψ→0

1

N

N∑
i=1

∂2Z[ψ]

∂ψi(s)∂ψi(s′)
= 1

N

N∑
i=1

〈σi(s)σi(s′)〉 (10)

where 〈·〉 denotes the thermal average. Using the assumption of self-averaging, we replace
the generating function Z[ψ] with its ensemble average Z̄[ψ].

Evaluating the averaged generating function Z̄[ψ] through the saddle point method,
Düring et al succeeded in obtaining the following macroscopic recursive equations for the
order parameters of (8)–(10).

m(s) =
〈
ξs
∫

{dv dw} eiv·w− 1
2w·Rw tanhβ[ξsm(s − 1) + θ(s − 1) +

√
αv(s − 1)]

〉
ξ

(11)

G(s, s′) = δs,s ′+1β

{
1 −

〈 ∫
{dv dw} eiv·w− 1

2w·Rw

× tanh2 β[ξsm(s − 1) + θ(s − 1) +
√
αv(s − 1)]

〉
ξ

}
(12)

C(s, s′) = δs,s ′ + (1 − δs,s ′)

〈 ∫
{dv dw} eiv·w− 1

2w·Rw

× tanhβ[ξsm(s − 1) + θ(s − 1) +
√
αv(s − 1)]

× tanhβ[ξs
′
m(s′ − 1) + θ(s ′ − 1) +

√
αv(s′ − 1)]

〉
ξ

(13)

where {dv dw} = ∏
s<t

[
dv(s)√

2π
dw(s)√

2π

]
for v = (v(0), v(1), . . . , v(t − 1))T , w = (w(0),

w(1), . . . , w(t − 1))T , 〈·〉ξ denotes the average over all ξ ’s and the matrixR is given by

R =
∑
n�0

[(G)nC(G†)n]. (14)

4. Dynamic treatment of the path-integral method

4.1. Transient dynamics

These formal dynamical equations seem to be intractable because the numerical complexity
in calculating these equations directly becomes exponentially large with respect to the time s.
Although the rigorous solution of these equations formally has an ability to treat the
macroscopic state transition, Düring et al derived stationary state equations from these formal
dynamical equations, and only analysed the stationary properties of the storage capacity and
the phase diagram. In contrast, we have succeeded in obtaining a tractable description of the
macroscopic dynamic state transition from the result as shown below.

Since the matrix R is R(s, s′) = 〈v(s)v(s′)〉, R represents the covariance matrix of
crosstalk noise v. We need the value of R(s, s′) for each time to analyse the transient
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dynamics exactly. In consideration of this, we reconsidered (12) and succeeded in deriving
a recurrence relation form of R(s, s′). From (12), G(s, s′) = 0 is satisfied when s �= s′ + 1.
Therefore, the matrixG can be given by

G =




0 0 0 · · · 0
g1 0 0 · · · 0
0 g2 0 · · · 0
...

. . .
...

0 · · · 0 gt−1 0


 (15)

with gs = G(s, s−1). From this, we can easily find thatGn(s, s′)= δs,s ′+n
∏n−1

τ = 0 gs−τ (n� 1)
and

[(G)nC(G†)n](s, s′) =




C(s, s′) n = 0

C(s − n, s ′ − n)

n−1∏
τ=0

gs−τ

n−1∏
τ ′=0

gs ′−τ ′ 1 � n � s.

0 n > s

(16)

From (14), R(s, s′) can be reduced to

R(s, s′) = C(s, s′) +
s∑

n�1

C(s − n, s ′ − n)

n−1∏
τ=0

G(s − τ, s − τ − 1)

×
n−1∏
τ ′=0

G(s′ − τ ′, s′ − τ ′ − 1) (17)

= C(s, s ′) + C(s − 1, s ′ − 1)G(s, s − 1)G(s′, s′ − 1) +
s−1∑
n�1

C(s − n− 1, s ′ − n − 1)

×
n∏

τ=0

G(s − τ, s − τ − 1)
n∏

τ ′=0

G(s′ − τ ′, s ′ − τ ′ − 1) (18)

= C(s, s′) + G(s, s − 1)G(s ′, s′ − 1)

{
C(s − 1, s′ − 1) +

s−1∑
n�1

C(s − n− 1, s′ − n − 1)

×
n−1∏
τ=0

G(s − τ − 1, s − τ − 2)
n−1∏
τ ′=0

G(s′ − τ ′ − 1, s ′ − τ ′ − 2)

}
. (19)

We can, therefore, derive a recurrence relation form of R(s, s′) as

R(s, s′) = C(s, s′) + G(s, s − 1)G(s′, s ′ − 1)R(s − 1, s ′ − 1). (20)

Using this recurrence relation, we can evaluate the value of R(s, s′) for each time.
Next, since the terms tanh(·) of m(s) and G(s, s − 1) include only the variable v(s − 1),

these multiple integral equations can be reduced to the following single integral equations
using (A18) in appendix A.

m(s) =
〈
ξs
∫

Dz tanhβ[ξsm(s − 1) + θ(s − 1) + z
√
αR(s − 1, s − 1)]

〉
ξ

(21)

G(s, s − 1) = β

{
1 −

〈∫
Dz tanh2 β[ξsm(s − 1) + θ(s − 1) + z

√
αR(s − 1, s − 1)]

〉
ξ

}

(22)
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with the familiar abbreviation Dz = dz√
2π

e− 1
2 z

2
. Since C(s, s′) includes v(s− 1) and v(s′ − 1),

C(s, s′) can be reduced to a double integral equation from (A18):

C(s, s) = 1 (23)

C(s, 0) =
〈
ξpm(0)

∫
Dz tanhβ[ξsm(s − 1) + θ(s − 1) + z

√
αR(s − 1, s − 1)]

〉
ξ

(24)

= 0 (25)

C(s, s′) =
〈∫

dze− 1
2z·R−1

11 z

2π |R11| 1
2

tanhβ[ξsm(s − 1) + θ(s − 1) +
√
αz(s − 1)]

× tanhβ[ξs
′
m(s′ − 1) + θ(s ′ − 1) +

√
αz(s′ − 1)]

〉
ξ

(26)

where the matrixR11 is a 2 × 2 matrix consisting of the elements ofR at time s − 1 and time
s ′ − 1 and z = [z(s − 1), z(s′ − 1)]T . We, therefore, have the macroscopic state equations
(20)–(26) for each time, and can analyse the transient dynamics exactly.

4.2. Stationary state equations

Let us derive the stationary state equations from our macroscopic state equations. We assume
m(t) → m and R(t, t ′) → r when t, t ′ → ∞. In this case, we can get

m =
〈
ξ

∫
Dz tanhβ[ξm + θ + z

√
αr]

〉
ξ

(27)

q =
〈∫

Dz tanh2 β[ξm + θ + z
√
αr]

〉
ξ

(28)

and also G(t, t − 1) → β (1 − q). We can, therefore, obtain

r = 1

1 − β2 (1 − q)2 . (29)

These equations (27)–(29)are coincident with those obtained by Düring et al. Using (27)–(29),
the stationary state can be evaluated.

5. Statistical neurodynamics

5.1. Finite temperature case

Macroscopic state equations have also been derived for a sequential associative memory model
with absolute zero temperature T = 0 by statistical neurodynamics [25]. In this paper, we
derive the macroscopic state equations for the present model with finite temperature T � 0,
by statistical neurodynamics [20]. In statistical neurodynamics, the input is divided into a
signal term and a crosstalk noise term. From (2) and (4), we obtain

hi(s) = ξs+1
i ms(s) + zi(s) + θi(s) (30)

zi(s) =
p∑

µ �=s

ξ
µ+1
i mµ(s) (31)

mµ(s) = 1

N

∑
i

ξ
µ

i σi(s). (32)
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The overlaps mµ(s) are defined for each pattern ξµ. We assume that the crosstalk noise zi(s)
is normally distributed with mean zero and variance ρ2(s, s). Then, the sequence overlap
m(s) = ms(s) for condensed patterns becomes

m(s) =
〈
ξs
∫

Dz tanhβ[ξsm(s − 1) + θ(s − 1) + zρ(s − 1, s − 1)]

〉
ξ

. (33)

Next, let us evaluate the overlap mµ(s), µ �= s between the network state σ(s) and the
uncondensed pattern ξµ in order to calculate the covariance matrix ρ2(s, s′) = E

[
zi(s)zi(s

′)
]

of the crosstalk noise of (31). We assume that the pattern ξµi and the state σi(s) are independent
regarding i. The state σi(s) is correlated with the uncondensed pattern ξ

µ

i , because the local
field hi(s − 1) includes the pattern ξµ. From (30), since the overlap mµ(s) is O(1/

√
N),

the term tanh [βhi(s − 1)], which determines the state σi(s) stochastically, is expanded as
follows:

tanh[βhi(s − 1)] = tanh
[
βh

(µ)

i (s − 1)
]

+ βξ
µ

i m
µ−1(s − 1) sech2

[
βh

(µ)

i (s − 1)
]

(34)

h
(µ)

i (s − 1) = ξsi m
s−1(s − 1) +

1

N

p∑
ν �=s,µ−1

ξν+1
i mν(s − 1) + θi(s − 1). (35)

Here, we use (tanh x)′ = 1 − tanh2 x = sech2x. Then, we get

Prob [σi(s)|hi(s − 1)] = Prob
[
σi(s)|h(µ)i (s − 1)

]
+ 1

2

[
1 + βξ

µ

i σi(s)m
µ−1(s − 1) sech2βh

(µ)

i (s − 1)
]
. (36)

We can derive

mµ(s) = 1

N

∑
i

ξ
µ

i σ
(µ)

i (s) + U(s)mµ−1(s − 1). (37)

Note that σ (µ)

i (s) is independent of ξµi and U(s) is given by

U(s) = β

〈∫
Dz sech2β[ξsm(s − 1) + θ(s − 1) + zρ(s − 1)]

〉
ξ

(38)

= β

{
1 −

〈∫
Dz tanh2 β[ξsm(s − 1) + θ(s − 1) + zρ(s − 1)]

〉
ξ

}
. (39)

Therefore, the covariance of the crosstalk noise is given by

ρ2(s, s′) = αE

[
1

N

N∑
i=1

σ
(µ)

i (s)σ
(µ)

i (s′)

]
+ U(s)U(s′)E

[
p∑

µ �=s,s ′
mµ−1(s − 1)mµ−1(s′ − 1)

]

+U(s′)E

[
1

N

p∑
µ �=s,s ′

∑
i

ξ
µ

i σ
(µ)

i (s)mµ−1(s′ − 1)

]

+U(s)E

[
1

N

p∑
µ �=s,s ′

∑
i

ξ
µ

i σ
(µ)

i (s′)mµ−1(s − 1)

]
. (40)
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From (37), the third term on the rhs of (40) becomes

U(s′)E

[
1

N

p∑
µ �=s,s ′

∑
i

ξ
µ

i σ
(µ)

i (s)mµ−1(s′ − 1)

]

= U(s′)E

[
1

N2

p∑
µ �=s,s ′

∑
i

ξ
µ

i ξ
µ−1
i σ

(µ)

i (s)σ
(µ−1)
i (s′ − 1)

]

+U(s′)U(s′ − 1)E

[
1

N

p∑
µ �=s,s ′

∑
i

ξ
µ

i σ
(µ)

i (s)mµ−2(s′ − 2)

]
. (41)

According to the literature [24], (41) becomes zero as follows. Since ξ
µ

i and ξ
µ−1
i are

independent of σ (µ)

i (s) and σ
(µ−1)
i (s′ − 1), respectively, the first term on the rhs of (41)

becomes E
[
ξ
µ

i ξ
µ−1
i σ

(µ)

i (s)σ
(µ−1)
i (s′ − 1)

] = 0. Using (37)–(41) up to the initial time
iteratively, (41) becomes

U(s′)E

[
1

N

p∑
µ �=s,s ′

∑
i

ξ
µ

i σ
(µ)

i (s)mµ−1(s′ − 1)

]

=
s ′∏

τ=1

U(τ)E

[
1

N

p∑
µ �=s,s ′

∑
i

ξ
µ

i σ
(µ)

i (s)mµ−s ′
(0)

]
. (42)

Because of the sequential associative memory with period p = αN , the correlations for
s′ = p, 2p, 3p, . . . remain. These can, however, be neglected in the limit N → ∞. Therefore,
the third term on the rhs of (40) becomes zero. Similarly, the fourth term also becomes zero.
Finally, the covariance is given by

ρ2(s, s′) = αC(s, s′) + U(s)U(s′)ρ2(s − 1, s ′ − 1). (43)

5.2. Path-integral method and statistical neurodynamics

Let us compare the results obtained by the path-integral method and the results obtained by
the statistical neurodynamics. From (20) and (43), let ρ2(s, s′) correspond to αR(s, s′). In
this case, we obtain U(s) = G(s, s − 1) from (22) and (39), and then ρ2(s, s′) = αR(s, s′)
from (20) and (43). Moreover, the overlap from (21) is equal to that from (33).

As stated above, both theories give the same macroscopic state equations for the sequential
associative memory model. This finding means that the crosstalk noise in the present model
is normally distributed even if the network fails in retrieval and also that the macroscopic state
equations obtained by the statistical neurodynamics can give the exact solution.

6. Retrieval process

In this section, let us discuss the transient dynamics of the sequential associative memory
model. Since macroscopic state equations obtained by statistical neurodynamicsare equivalent
to those by the path-integral method, we use the notations of m(t), U(t) and ρ2(t, t ′). Let
ρ2(t, t) be ρ2(t, t) = αr(t) when t ′ = t . We analyse the case of θ(t) = 0 and derive the
macroscopic state equations

m(t + 1) =
〈
ξ t+1

∫
Dz tanhβ[ξ t+1m(t) + z

√
αr(t)]

〉
ξ

(44)
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Figure 1. Time evolution of overlapm(t)with loading ratesα = 0.20, 0.26 and inverse temperature
β = 5. The solid lines denote theoretical results and the broken lines denote results by computer
simulations with N = 100 000.

U(t + 1) = β

{
1 −

〈∫
Dz tanh2 β[ξ t+1m(t) + z

√
αr(t)]

〉
ξ

}
(45)

r(t + 1) = 1 + U 2(t + 1)r(t). (46)

Figure 1 shows the time evolution of the overlap m(t). The solid lines represent results
obtained by the macroscopic state equations (44)–(46), and the broken lines represent results
obtained by computer simulations with N = 100 000, where the loading rate is α = 0.20, 0.26
and the inverse temperature is β = 5 (T = 0.2). The abscissa denotes the time t and the
ordinate denotes the overlap m(t). In this case, the storage capacity is αc = 0.246. As shown
in figure 1, our theory can describe the transient dynamics quantitatively even if the network
fails in retrieval or the loading rate α exceeds the storage capacity αc.

In the autoassociative memory models, the crosstalk noise is not normally distributed
when the network fails in retrieval [20, 23]. In the present sequential associative memory
model, however, the macroscopic state equations obtained by the path-integral method are
represented in the form of a single or double Gaussian integral. Therefore, the first-, second-,
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Figure 2. Time evolution of cumulants C1(t), C2(t), C3(t), C4(t) and overlap m(t) with loading
rates α = 0.20, 0.26 and inverse temperature β = 5. The initial overlap is m(0) = 0.2. The solid
lines denote theoretical results and the broken lines denote results by computer simulations with
N = 100 000.

third- and fourth-order cumulantsC1(t), C2(t), C3(t) and C4(t) are evaluated in order to verify
the distribution of the crosstalk noise. When the crosstalk noise is normally distributed, the
third and fourth cumulants are zero. The cumulants are defined by

C1(t) = z̄(t) (47)

C2(t) = z2(t)− z̄2(t) (48)

C3(t) = z3(t)− 3z̄(t)z2(t) + 2z̄3(t) (49)

C4(t) = z4(t)− 3
(
z2(t)

)2
− 4z̄(t)z3(t) + 12z̄2(t)z2(t) − 6z̄4(t) (50)

where zn(t) denotes the nth-order moment for the crosstalk noise zi(t) and is defined as

zn(t) = 1

N

N∑
i=1

{zi(t)}n. (51)

The cumulantsC1(t) andC2(t) represent the average and variance of z(t), respectively.
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Figure 3. Overlap m(t) and variance of crosstalk noise r(t) with loading rate α = 0.20
and inverse temperature β = 5. The solid lines denote theoretical results and the broken
lines denote results by computer simulations with N = 100 000. The initial overlap is
m(0) = 0.10, . . . , 0.40, 0.43, 0.44, 0.50, . . . , 1.0.

Figure 2 shows the time evolution of cumulants and overlapm(t), where the loading rates
are α = 0.20, 0.26 and the inverse temperature is β = 5 (T = 0.2). The initial overlap
is m(0) = 0.2, where the network fails in retrieval. The solid lines represent the overlap
m(t) and the variance of the crosstalk noise r(t) obtained by our theory. These lines agree
with the overlap and the cumulant C2(t) obtained by the computer simulations. Since the
third- and fourth-order cumulants are zero, we can find that the crosstalk noise is normally
distributed. In the sequential associative memory model, the third- and fourth-order cumulants
hold C3(t) = C4(t) = 0, as obtained by the path-integral method, even if the network fails in
retrieval. Figure 2 shows that the Gaussian assumption in the statistical neurodynamics holds
for the present model.

Figure 3 shows the transition of the overlap m(t) and the variance of the crosstalk noise
αr(t). The solid lines represent results obtained by our theory and the broken lines represent
results obtained by computer simulations with N = 100 000. The loading rate is α = 0.20
and the inverse temperature is β = 5 (T = 0.2). As shown in figure 3, there are two stable
stationary states; one is m ≈ 1, which represents a retrieval state, and the other is m = 0,
which represents a non-retrieval state. We can, therefore, define the critical overlap, which
determines whether patterns will be retrieved. When the initial overlap is larger than the
critical overlapmc, stored patterns can be retrieved. For example, as shown in figure 3, there is
a separatrix on the locus starting from the initial overlapmc, and the network passes through it
at time t = 1. In general, an unstable stationary state obtained by macroscopic state equations
does not agree with a separatrix obtained by microscopic dynamics, e.g. (1). As shown by
the cross in figure 3, however, we can find that the unstable stationary state agrees with the
separatrix for the present model.

Figure 4 shows a basin of attraction where the inverse temperature is β = 5. The abscissa
denotes the loading rate α and the ordinate denotes the overlap. The solid line represents a
result obtained by theory. The lower line represents the critical overlap mc and the upper line
represents the stationary overlapm∞ at time t → ∞, where the network starts from the initial
overlapm(0) = 1. The intersection between the critical overlapmc and the stationary overlap
m∞ gives the storage capacity αc. The broken lines represent the overlap m, which is the
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Figure 4. Basin of attraction (solid line) obtained by theory with inverse temperature β = 5. The
error bars denote the median and the first and third quartiles over 11 trials by computer simulations
with N = 10 000.

unstable stationary state given by equations (27)–(29). The error bars represent the median
and the first and third quartiles over 11 trials of the overlaps mc and m∞, which are obtained
by computer simulations with N = 10 000. As shown in this figure, the basin of attraction
obtained by the theory quantitatively coincides with that of the computer simulations.

7. Conclusions

We rigorously derived the dynamic macroscopic state equations for the sequential associative
memory model through the path-integral method. This suggested that the crosstalk noise is
normally distributed for the sequential associative memory model. We also examined the
cumulants of the crosstalk noise by computer simulations, and found the third- and fourth-
order cumulants to be zero. This finding strongly supported the normally distributed crosstalk
noise. Using this exact solution, we obtained dynamical properties such as the critical overlap
mc, the temporal behaviour of the overlap, and so on. These theoretically obtained results
agreed with those of computer simulations. We also found that the separatrix coincides with
the unstable fixed point of the macroscopic stationary state equations.

Historically, dynamic macroscopic state equations have been derived by the statistical
neurodynamics for a sequential associative memory model with zero temperature T = 0
assuming the crosstalk noise to obey the Gaussian distribution [25]. We extended this
theory to the finite temperature case and compared dynamic macroscopic state equations
by statistical neurodynamics with those by the path-integral method. As a result, we found
both to be completely equivalent for the sequential associative memory model. This means
that statistical neurodynamics is exact for the sequential associative memory model.

For the sequential associative memory model, we could drive the recurrence relation of
R(s, s ′) and the dynamic macroscopic state equations. This is the reason why no effective
self-interaction, which is caused by the time correlation of states, remains. In contrast,
since only one pattern is retrieved for an autoassociative memory model, the effect of the
intrinsic time correlation cannot be avoided and the distribution of the crosstalk noise becomes
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non-Gaussian. It is known that this treatment of the autoassociative memory model is
intractable [9, 26].

Appendix A. Multiple Gaussian integral

In order to calculate equations (11)–(13), it is sufficient to treat the following form of a multiple
Gaussian integral,∫

{dv dw} eiv·w− 1
2w·Rwf (v1) (A1)

where we put v = (v1,v2)
T . We define S as the inverse matrix of R. Corresponding to the

representation of v = (v1,v2)
T , the matrixR and its inversion S are represented as,

R =
(
R11 R12

R21 R22

)
S =

(
S11 S12

S21 S22

)
. (A2)

For example, v1 and R11 are v(s − 1) and R(s − 1, s − 1) with equations (11) and (12),
respectively, while v1 = (v(s − 1), v(s′ − 1))T and

R11 =
(
R(s − 1, s − 1) R(s − 1, s ′ − 1)
R(s′ − 1, s − 1) R(s ′ − 1, s ′ − 1)

)
(A3)

with equation (13). According to the definition, SR = I . We obtain

S11R11 + S12R21 = I (A4)

S21R11 + S22R21 = 0 (A5)

where I and 0 are the identity and zero matrix, respectively. Solving (A4) and (A5) with

respect to R11, we obtainR11 = (
S11 − S12S

−1
22 S21

)−1
.

Accordingly, the integral of equation (A1) is obtained as∫
{dv dw} eiv·w− 1

2w·Rwf (v1) =
∫

{dv dw} e− 1
2 (w−iR−1v)

†
R(w−iR−1v)− 1

2 v·R−1vf (v1)

= 1

|R| 1
2

∫
{dv} e− 1

2 v·R−1vf (v1)

= 1

|R| 1
2

∫
{dv} e− 1

2 (v1·S11v1+v1·S12v2+v2·S21v1+v2·S22v2)f (v1)

= 1

|R| 1
2

∫
{dv} e

− 1
2

(
v2+S−1

22 S
†
12v1

)†
S22(v2+S−1

22 S21v1)− 1
2 v

†
1(S11−S12S

−1
22 S21)v1

f (v1)

= 1

|R| 1
2 |S22| 1

2

∫
{dv1} e− 1

2 v1·R−1
11 v1f (v1) (A6)

with {dv} = ∏
s<t

[
dv(s)√

2π

]
for v = (v(0), v(1), . . . , v(t − 1))T and {dv1} = dv(s−1)√

2π
or

{dv1} = dv(s−1)√
2π

dv(s ′−1)√
2π

. Substituting the following identities

|S| =
∣∣∣∣S11 − S12S

−1
22 S21 0

S21 S22

∣∣∣∣
= ∣∣S11 − S12S

−1
22 S21

∥∥S22

∣∣ (A7)

|S||R| = 1 (A8)
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into equation (A6), we get
1

|R| 1
2 |S22| 1

2

∫
{dv1} e− 1

2 v1·R−1
11 v1f (v1) = ∣∣S11 − S12S

−1
22 S21

∣∣ 1
2

∫
{dv1} e− 1

2 v1·R−1
11 v1f (v1)

= 1

|R11| 1
2

∫
{dv1}e− 1

2 v1·R−1
11 v1f (v1). (A9)

We can, therefore, obtain a simple form of the multiple integral∫
{dv dw}eiv·w− 1

2w·Rwf (v1) = 1

|R11| 1
2

∫
{dv1}e− 1

2v1·R−1
11 v1f (v1). (A10)
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